

Mathenati¢§

Part 1 (Set of numbers)

Numbers are used to count, represent a quantity, making calculation,...

The numbers are classified in many different sets depending on their properties.

The main sets are:

- **Set** of natural numbers.
- **Set** of integers.
- Set of decimal numbers.
- ❖ Set of rational numbers.
- **Set** of real numbers.

L. Set of natural numbers

- ☐ Numbers used for counting
- \Box They are **positive**.
- ☐ There is no point between the digits that compose the number.

```
Example: 0; 1; 2; ...; 25; ...; 100; ...
```

Remark:

The digits are: 0; 1; 2; 3; 4; 5; 6; 7; 8; 9

2. Set of integers

- ☐ They can be **positive** or **negative**.
- ☐ There is no point between the digits that compose the number.

Example:

```
\dots; -100; \dots; -25; \dots -2; -1; 0; 1; 2; \dots; 25; \dots; 100; \dots
```

Remark:

The natural numbers are part of the integers.

3. Set of Decimal numbers

- ☐ The decimal part is limited.
- ☐ They can be **positive** or **negative**.

Example:

```
1.\underline{5}; 2.\underline{899}; 0.\underline{2365}; -0.\underline{1}; -2.\underline{5}; ...
```

Remark:

☐ The integers are decimal numbers of 0 as a decimal part:

$$2 = 2.0$$
; $-3 = -3.0$

4. Set of rational numbers

- ☐ They can be written in form of fraction.
- ☐ They can be **positive** or **negative**.

IMPORTANT

The fraction is in the form of $\frac{a}{b}$ where a and b are two integers (b \neq 0).

Example:

 \Box $\frac{2}{3}$; $\frac{-2}{3}$; $\frac{-2}{-3}$; $\frac{2}{-3}$ are rational numbers since there are in form of a fraction.

4. Set of rational numbers

☐ Decimal numbers are rational since they can be written in form of fraction of denominator power of 10:

1.
$$5 = \frac{15}{10}$$
; $-3.11 = -\frac{311}{10^2}$; $0.00025 = \frac{25}{10^5}$; ...

- \square Periodic numbers: 1.333 ... = 1. $\overline{3}$ = 1 $\frac{3}{9}$ = 1 $\frac{1}{3}$ = $\frac{4}{3}$ which is fraction.
- ☐ Integers are rational numbers since they van be written in f

fraction of denominator 1:
$$2 = \frac{2}{1}$$
; $-3 = -\frac{3}{1}$; ...

5. Set of real numbers

- ☐ Any number found in the real world is called real.
- ☐ They can be **positive** or **negative**.
- ☐ They can be naturals, integers, rationals or irrationals.

Remark:

Irrational numbers: cannot be written in form of fraction.

Example: $\sqrt{2}$; π ; ...

M@thEm@ti¢§

Within the 5 main sets, there are many subsets of numbers according to their properties.

For example:

Set of prime numbers, set of even numbers, set of odd number ...

The main sets of numbers are:

M@thEm@ti¢§

Answer with true or false

Statement	True	False
-17 is a natural number.		X
3π is rational number.		X
5.236 is a decimal number.	X	
$\frac{5}{3}$ is an irrational number.		X
$\sqrt{4}$ – 3 is an irrational number.		X
$-\frac{64}{-2}$ is an integer.	X	
-99999999 is a decimal number.	X	

